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in the Hessian is well conditioned while the aerodynamics
part is ill conditioned. It should be emphasized that in thisThe symbol of the Hessian for a static aeroelastic optimization

model problem is analyzed for the optimization of a plate’s shape study the shape of the plate is allowed to change only in
and rigidity distribution with respect to a given cost function. The the normal direction (the planform remains fixed). There-
flow is modeled by the small-disturbance full-potential equation fore, no inferences could be made as to the coupling be-and the structure is modeled by an isotropic (von Kármán) plate

tween the aerodynamic and the structural design when theequation. The cost function consists of both aerodynamic and struc-
planform’s shape is allowed to change during the optimi-tural terms. In the new analysis the symbol of the cost function

Hessian near the minimum is approximated for the nonsmooth zation.
error components in the shape and rigidity. The result indicates One consequence of this result is that the solution of
that the system can be decoupled to two single discipline submini-

such problems can be achieved in two stages. In the firstmization problems which will effectively converge to the multidisci-
stage, the MDO approach should be taken on a coarseplinary optimal solution. The result also indicates that the structure
model; that is, the flow and the structure equations arepart in the Hessian is well conditioned while the aerodynamic part

is ill conditioned. Applications of the result to optimization strategies considered simultaneously during the minimization, which
are discussed and demonstrated numerically. Q 1997 Academic Press is a more complex problem than optimizing the decoupled

individual disciplines problems. In the second stage, a re-
fined CFD code for the flow and a detailed finite element1. INTRODUCTION
code for structure should be used in a sequential algorithm
in which the shape is optimized relative to aerodynamicLately, there is a growing interest in multidisciplinary
considerations, followed by structural optimization limiteddesign and optimization (MDO) [1–4]. An important prob-
to a given shape. This approach should result in a goodlem in that field is the static aeroelastic optimal design
approximation of the multidisciplinary optimal solution.problem (for example, [5–7]). In this problem there are two

The paper outline is as follows. In Section 2 the optimiza-coupled disciplines: aerodynamics and structural analysis.
tion problem is formulated. In Section 3 the necessaryThe problem is to compute the aerodynamic shape and
conditions for a minimum are derived with the adjointstructural rigidity such that some given cost function is min-
method and their relation with the Hessian is discussed.imized.
In Section 4 the symbol of the Hessian for the nonsmoothThe purpose of this paper is to demonstrate new analysis
frequencies is derived by using local mode analysis. Inof Hessians for MDO problems on the above aeroelastic
Section 5 applications of the result to optimization strate-optimization problem and to draw some practical conclu-
gies are discussed. In Section 6 the two strategies are dem-sions. The approach is to consider a simple model problem
onstrated numerically on a simple model problem. Finally,and approximate the symbol of the Hessian near the mini-
Section 7 contains concluding remarks.mum for the nonsmooth frequencies. The Hessian contains

curvature information which is essential for the solution
of ill-conditioned optimization problems. Hessian symbols 2. PROBLEM FORMULATION
were previously computed for smoothing predictions in

In this section the aeroelastic analysis problem and thethe development of multigrid one-shot methods [8–11] and
optimal design problem are presented. The aeroelasticlately for the analysis of inviscid aerodynamic optimization
analysis problem couples the full-potential flow equationproblems [12]. The analysis in this paper indicates that for
with the isotropic von Kármán plate equation to give thethe nonsmooth components the system can be decoupled
pressure distribution over the plate, p, and the plate defor-to two single discipline subminimization problems which
mation, W, for a given plate shape, a, and rigidity distribu-will effectively converge to the multidisciplinary optimal

solution. The analysis also indicates that the structures part tion, D. The design problem is to compute the ‘‘best’’
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shape and structural rigidity so that a given cost function 2.2. The Structural Model
is minimized.

The structural model consists of the isotropic von Kár-
The cost function is composed of aerodynamic and struc-

mán plate equation for the displacement W [14, 15]
ture parts. The aerodynamic cost function estimates perfor-
mance by measuring the difference, in L2 norm, of the

G(D, W) 5 2p z 5 0 (2.3)pressure distribution from a desired one. The structure
cost function gives a measure of the structural weight and

with the following definition of the operator G:penalizes structural deformation.
Since our interest is in a local mode analysis of the

G(D, W) 5 (DWxx)xx 1 (DWyy)yy 1 n[(DWyy)xx
(2.4)Hessian near the minimum, we consider the small distur-

bance equations of flow over a flat plate. 1 (DWxx)yy] 1 2(1 2 n)(DWxy)xy ,

2.1. The Flow Model where D is the plate rigidity distribution, ry is the flow
density and n is the Poisson ratio. The pressure, p, is relatedWe choose the full-potential equation as a model for
with the potential, f, by the Bernoulli relation (we assumethe flow. It approximates inviscid flow characteristics and
fx ! Uy)is used in applications for aerodynamic optimal design

(for example, [13]). For the analysis of the cost function’s
p 5 py 2 ryU 2

yfx . (2.5)Hessian in the vicinity of the minimum it is enough to
consider small perturbations of the shape from the optimal

In two space dimensions Eq. (2.3) reduces to the beamsolution. The resulting changes in the potential, f, satisfy
equationthe steady state small disturbance potential equation. The

geometry is taken to be half-space V 5 (x, y, z $ 0), where
(DWxx)xx 5 2py 1 ryU 2

yfx z 5 0. (2.6)the x axis is the stream-wise coordinate, y is the coordinate
perpendicular to the stream and parallel to the plate (span-

There are few choices for the boundary conditions for thewise direction), and z is in the normal direction to the plate.
plate. However, Eq. (2.3) is elliptic, so the effect of a high-

The aerodynamic state equation. frequency error component in the deflection W is local,
and therefore the plate boundary conditions do not play

Lf 5 0 z $ 0
(2.1)

a role in the local mode analysis.

Bf 5 (ax 1 Wx) z 5 0
2.3. The Cost Function Model

The definition of the cost function is not unique andwith the following definitions of the interior operator, L,
depends on the specific application under consideration.and boundary operator, B
In general, the requirement of the aeroelastic optimal de-
sign is that it have maximum aerodynamic performanceL 5 (1 2 M 2)xx 1 yy 1 zz

(2.2) and minimum structural weight and deformation. Some of
B 5 z , the desired features of the final design are in many cases

modeled by a set of inequality constraints, as is the case
for the minimum deformation requirement. However, forwhere Uy is the free stream velocity, M is the Mach num-
the purpose of this paper we will avoid inequality con-ber, with the following far-field boundary conditions:
straints by adding a term to the cost function which penal-

Inflow boundary condition. izes deformation. In the following the different terms com-
posing the cost function are discussed.Subsonic: fx 5 0

Supersonic: fx 5 0 and f 5 0 (we assume that the
• The Aerodynamic Performance Termnormal free stream velocity, Vy , is zero).

A common aerodynamic cost function is drag (or drag
Outflow boundary condition. over lift). However, in inviscid aerodynamic optimization

models a commonly used cost function is pressure matchingSubsonic: fx 5 0
(for example, [16–20]). Relation (2.5) implies the cost func-Supersonic: No Boundary Condition.
tion term

The missing low-order terms in the boundary condition
of (2.1) vanish if the analysis is performed around a flat

F aero 5 E
G

(fx 2 f *)2 ds,shape.
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TABLE I where c1 , c2 , c3 are parameters. The cost function is a
map from a function space to R.Rigidity and Weight

The minimization problem is to find a shape function,
D Weight a, and rigidity distribution, D, such that the cost function

is minimized subject to Eqs. (2.1) and (2.3). We assume
Beam rp eG bh dxEbh3

12
the existence of a solution for both the state equations
and for the optimization problem (a rigorous treatment ofPlate rp eG t dx dyEt3

12(1 2 n 2) existence and uniqueness of solutions is beyond the scope
of this paper).

where ds is an integration element on the shape G. The 3. ADJOINT FORMULATION AND THE HESSIAN
target distribution, f *(x, y) [ L2(G), is related to the de-
sired pressure distribution, p*(x, y), by the relation In this section the necessary conditions for a minimum

are derived with the adjoint method (e.g., [17–22]). The
necessary conditions are given as a set of state equationsf *(x, y) 5

p*(x, y) 2 py

2ryU 2
y

.
(the analysis problem), costate equations (the adjoint prob-
lem), and design equations (optimality conditions). Then

• The Structural Weight Term the relation between the design equation residuals and the
Hessian of the cost function is discussed. This relation willAnother important factor in aeroelastic design is the
be used in the next section to derive the Hessian’s symbol.resulting weight of the structure. In practice the weight is

measured by the sum of the weights of all the components
composing the structure. In plate models the weight is 3.1. The Necessary Conditions for a Minimum
related with the plate rigidity, D, and is given in Table I,

The Lagrangian is a functional defined bywhere E is the Young modulus of elasticity, b and h are the
cross section components of the beam, rp is the structural
density, and t is the plate’s thickness.

L (f, W, a, D, j, l, h) 5 F(f, W, D)In both cases the weight of the structure is proportional
to D1/d where d is the space dimension

1 E
G

j(Bf 2 (ax 1 Wx)) ds
(3.1)

F weight Y E
G

D1/d ds.
1 E

V
lLfdV 1 E

G
h(G(D, W)

• The Structural Deformation Term
2 ryU2

yfx) ds,
As a result of the pressure, p, exerted on the plate by

the flow, the structure will deform its shape by W (bend
and twist). In practice the structure is designed so that the where j 5 j(x, y), h 5 h(x, y) and l 5 l(x, y, z) are
amount of deformation will be constrained not to exceed Lagrange multipliers. The first order necessary conditions
some given limits. In this model we account for this require- for a minimum are derived by the requirement that the
ment by penalizing the deformation which is measured by first-order variation of the Lagrangian vanish (this is known
the work of the aerodynamic pressure on the plate, pW. as the adjoint method and the resulting conditions are
This will add to the cost function the term (see Eq. (2.5)) known as the Kuhn–Tucker conditions).

When considering the variation of the structure state
equation a linearization is performed,Fdeform 5 ryU2

y E
G

fxW ds.

Note that the effect of transverse velocities have been
G(D* 1 D̃, W* 1 W̃) 5 G(D*, W*) 1 GD(W*)D̃

(3.2)
disregarded in this model problem.

1 GW(D*)W̃ 1 h.o.t.,2.4. The Optimization Problem

We define the cost function, F 5 F(f, W, D), to be
where D̃ and W̃ are small perturbations of the displacement

F(f, W, D) 5 c1 E
G

(fx 2 f *)2 ds 1 c2 E
G

D1/d ds
(2.7)

and rigidity from the optimal solution W* and D*, respec-
tively, and where the linearized operators GD and GW are

1 c3 E
G

fxW ds, defined as
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3.2. The Relation of the Hessian with theGD(W*)D̃ 5 D̃xxW*xx 1 D̃yyW*yy 1 n[D̃xxW*yy 1 D̃yyW*xx]
Necessary Conditions

1 2(1 2 n)D̃xyW*xy (3.3) If the state and costate equations are satisfied then the
variation of the Lagrangian (3.1) is equal to the variationGW(D*)W̃ 5 G(D*, W̃).
in the cost function and is given by

Formally, W* and D* serve as nonconstant coefficients in
dL 5 E

G
2ãlx ds 1 E

G
D̃(GD(W*)h 1 FD) ds, (3.7)the linearized structure operator.

In the following the costate and design equations are
given (on the boundary, (z 5 0), j 1 l 5 0). where ã and D̃ are variations in the design variables. There-

fore, the quantities multiplying ã and D̃ in (3.7) are theCostate equations.
sensitivity gradients of the cost function with respect to
the design variables, when computed on the constraintLl 5 0 z $ 0
manifold

Bl 2 ryU 2
yhx 5 2Ff z 5 0 (3.4)

=aF 5 2lx
(3.8)

GW(D*)h 2 lx 5 2FW z 5 0.

=DF 5 GD(W*)h 1 FD .
Inflow boundary condition.

The state and costate equations, (2.1), (2.3), and (3.4), giveSubsonic: lx 5 0
an implicit relation between the costate variables and theSupersonic: No Boundary Condition.
design variables

Outflow boundary condition.
l 5 l(a, D)

(3.9)Subsonic: lx 5 0
Supersonic: l 5 0 and lx 5 0. h 5 h(a, D).

Design equations.
Using Eqs. (3.8) and (3.9) we can write the following rela-
tion which holds near the minimum (a* and D* denote the

2lx 5 0 z 5 0
(3.5) optimal value of the design variables a and D, respectively)

GD(W*)h 1 FD 5 0 z 5 0,
=aF(l(a* 1 a, D* 1 D))

where
5 H11a 1 H12D 1 h.o.t.

(3.10)
=DF(D* 1 D, h(a* 1 a, D* 1 D))Ff 5 22c1(fx 2 f *)x 2 c3Wx

5 H21a 1 H22D 1 h.o.t.,FW 5 c3fx (3.6)

where at the minimumFD 5
c2

d
D(12d)/d,

=aF(l(a*, D*)) 5 =DF(D*, h(a*, D*)) 5 0.
and where the operators in the adjoint and design equa-
tions (3.4–3.5) satisfy We conclude that on the constraint manifold, near the

minimum, the Hessian of the cost function relates the er-
L 5 L rors in the design variables with the residuals of the design

equations (sensitivity gradients). In the next section weGW(D*) 5 GW(D*)
will use this fact to calculate the symbol of the Hessian.

GD(W*) 5 GD(W*).

4. DERIVATION OF THE HESSIAN’S SYMBOL
The adjoint boundary operator B corresponds to the nor-
mal derivative, z , applied to a solution of the interior In the following section we compute the symbol of the

Hessian with local mode analysis. Hessian symbols werecostate PDE, l, when using the adjoint far-field boundary
conditions. We assume the existence of a solution to the previously computed for smoothing prediction in the devel-

opment of multigrid one-shot method [8–11] and lately forcostate equations.
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the analysis of inviscid aerodynamic optimization problems (1 2 M 2)g2
1 1 g2

2 1 g2
3 5 0. (4.4)

[12]. In the following the local mode analysis is outlined.
The analysis is performed in the vicinity of the minimum The choice of g3 should be done such that it will result in

where the design variables are assumed to have an error a physical solution. We differentiate between subsonic and
a and D. We assume that the state and costate equations supersonic flows.
are satisfied and consider the errors in the state and costate
variables (f, W, l, h) with respect to their value at the 4.2.1. Subsonic Flow
optimal solution. These errors are assumed to satisfy ho-

In the subsonic regime (M , 1) the physical solution ismogeneous equations similar to Eqs. (2.1, 3.4, 3.5), and
given bya linearization of Eq. (2.3). We then consider the high-

frequency errors in the design variables and compute an
g3 5 iÏg2

1(1 2 M 2) 1 g2
2,explicit solution of the problem in terms of exponential

functions in a half space. Then with a standard procedure
which corresponds to decaying solutionsthe problem in a half space is reduced to the boundary. On

the boundary we study the mapping from the transformed
design variables errors to the residuals of the design equa- f(x, y, z) 5 f̂(g1 , g2)ei(g1x1g2y)e2(Ïg2

1(12M2)1g2
2)z

tions, (=aF, =DF). The symbol of this mapping gives the
l(x, y, z) 5 l̂(g1 , g2)ei(g1x1g2y)e2(Ïg2

1(12M2)1g2
2)z.eigenvalues of the Hessian.

In that case the symbols of the boundary operators, B and4.1. Fourier Representation
B, are given by (recall that B and B are the normal deriva-

We start with the Fourier representation of the solution tives applied to a solution of the interior state and costate
in a half space and perform local mode analysis. Consider PDE, respectively)
errors in the solution of the form

B̂ 5 B̂ 5 2Ïg2
1(1 2 M 2) 1 g2

2. (4.5)
a(x, y) 5 â(g1 , g2)ei(g1x1g2y)

(4.1)
4.2.2. Supersonic FlowD(x, y) 5 D̂(g1 , g2)ei(g1x1g2y).

We differentiate between two supersonic cases which are
As a result, the errors in the state and costate variables determined by a Mach number denoted Mc and given by
are assumed to have the form

f(x, y, z) 5 f̂(g1 , g2 , g3)ei(g1x1g2y1g3z) Mc 5 !1 1 Sg2

g1
D2

.

l(x, y, z) 5 l̂(g1 , g2 , g3)ei(g1x1g2y1g3z)

(4.2)
The case 1 # M # Mc results in the same symbols for B̂W(x, y) 5 Ŵ(g1 , g2)ei(g1x1g2y)

and B̂ as for the subsonic flow case (Eq. (4.5)).
h(x, y) 5 ĥ(g1 , g2)ei(g1x1g2y). In the case Mc , M both signs of g3 in (4.4) correspond

to physical solutions. The positive root correspond to the
Before computing the relation between the state and co- characteristic which propagates into the shape, f1 , and
state error symbols, (f̂, l̂, Ŵ, ĥ), and the design error the negative root correspond to the characteristic which
symbols, (â, D̂), we reduce the problem to the boundary propagates out of the shape, f2 , (and a similar expression
by eliminating g3 from the symbols f̂ and l̂. of l)

4.2. Reduction to the Boundary
f(x, y, z) 5 f̂1(g1 , g2)ei(g1x1g2y1Ïug2

1(12M2)1g2
2uz)

(4.6)The reduction to the boundary is done by eliminating
1 f̂2(g1 , g2)ei(g1x1g2y2Ïug2

1(12M2)1g2
2uz).g3 from the symbol expressions using the interior equa-

tions. The following discussion regarding the choice of g3

Since the inflow information does not change as a resultwas done in [12] and is repeated here for completeness.
of a shape perturbation, the following holds:The term f satisfies the interior equation for f

f1(x, y, z) 5 0. (4.7)Lf̂(g1 , g2 , g3)ei(g1x1g2y1g3z) 5 0. (4.3)

Assuming a nontrivial solution, f̂ ? 0, Eq. (4.3) results in In the same manner the outflow characteristic of the
adjoint is not changing as a result of a shape perturbation:an algebraic relation between g1 , g2 , and g3
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l2(x, y, z) 5 0. (4.8)

Therefore, 1
B̂ 2ig1 0 0

2ryU 2
yig1 ĜW(D*0 ) 0 0

2F̂ff 2F̂fW B̂ 2ryU 2
yig1

F̂Wf 0 2ig1 ĜW(D*0 )
21

f̂

Ŵ

l̂

ĥ
2

(4.12)

f(x, y, z) 5 f̂2(g1 , g2)ei(g1x1g2y2Ïug2
1(12M2)1g2

2uz)

l(x, y, z) 5 l̂1(g1 , g2)ei(g1x1g2y1Ïug2
1(12M2)1g2

2uz)

We conclude that for flow speeds Mc , M the boundary
operator B is antisymmetric, (with respect to the adjoint 5 1

ig1â

2ĜD(W*0 )D̂

0

0
2.

operation), and the symbols B̂ and B̂ are given by

B̂ 5 2iÏug2
1(1 2 M 2) 1 g2

2u
(4.9)

The various symbols are given explicitly byB̂ 5 iÏug2
1(1 2 M 2) 1 g2

2u.

F̂ff 5 2c1g2
1In all flow conditions the multiplication B̂B̂ results in

the same expression: F̂fW 5 2ic3g1

F̂Wf 5 ic3g1
(4.13)B̂B̂ 5 ug2

1(1 2 M 2) 1 g2
2u. (4.10)

ĜW(D*0 ) 5 D*0 (g2
1 1 g2

2)2 1 l.o.t.
By eliminating g3 from the transformed equations the state

ĜD(W*0 ) 5 2g2
1(W*0xx 1 nW*0yy) 2 g2

2(W*0yy 1 nW*0xx)and costate flow equations can be written on the surface
(g1 , g2) which corresponds to the boundary (x, y).

2 g1g2(2(1 2 n)W*0xy).

4.3. Treatment of the Structure Equations
Note that the terms originating in the cost function serve

In this subsection we give a short note concerning the as a coupling symmetric block between the state and co-
transformation of the structure state and costate equations. state systems.
The structure state and costate equations contain noncon-

4.5. The Symbol of the Hessianstant coefficients which should be frozen prior to the local
mode analysis. The structure state and costate error equa- The design equations residuals, in the transformed space,
tions are given by (see Eqs. (2.3, 3.2, 3.4)) are given by

GD(W*)D 1 GW(D*)W 5 ryU 2
yfx z 5 0

(4.11)
ĝ1 5 2ig1l̂

(4.14)
GW(D*)h 2 lx 5 2FW z 5 0, ĝ2 5 ĜD(W*0 )ĥ 1 F̂DD(D*0 )D̂,

where D, W, f, h, and l denote the error variables, FW where F̂DD is the linearization of FD in (3.6),
denotes the error in FW , and the operators GD and GW

are defined in (3.3). Since Eqs. (4.11) have variable coeffi-
F̂DD 5

c2(1 2 d)
d 2 (D*0 )(122d)/d,cients, D* and W*, it is necessary to freeze them around

a point on the boundary. This procedure is justified as long
as the errors in the design variables are highly oscillatory and the symbols ĝ1 and ĝ2 are the symbols of the sensitivity
compared to W* and D*. We denote the values of W*(x, gradients =aF and =DF, respectively (see (3.8)).
y) and D*(x, y) at a point (x0 , y0) on the boundary by Inverting the system (4.12) and substituting l̂ and ĥ in
W*0 and D*0 , respectively. the symbol of the design residuals (4.14) results in a relation

between the residuals of the design equations and the er-
4.4. The Coupled State and Costate Equations in rors in the design variables. In Fourier space,

Fourier Space

In terms of their Fourier representation on the bound- 1ĝ1

ĝ225 1Ĥ11 Ĥ12

Ĥ21 Ĥ2221 â

D̂2, (4.15)ary, the state and costate error equations are given by the
matrix form
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where the matrix Ĥij is the symbol of the Hessian, as dis- where âconj is the complex conjugate of â, and a similar
expression for D, then the resulting Hessian symbol is realcussed in Sec. 3.2. Ĥ11 is the symbol of the aerodynamic

optimization Hessian, Ĥ22 of the structural optimization and symmetric.
Hessian, and Ĥ12 , Ĥ21 are the coupling terms. In the follow-

4.6. Discretization and the Condition Numbering, the terms Ĥij are given explicitly

In practice the problem is solved numerically and thus
discretization is introduced. Therefore the analysis shouldĤ11 5

g2
1ĜWk

det
(F̂ffĜW 1 2ryU 2

yig1F̂fW) (4.16)
be performed in the discrete space and the Hessian will
depend on the specific discretization. For the ‘‘ideal’’ dis-
cretization, the symbol of the Hessian is equal to the differ-Ĥ12 5

ig1ĜDk

det
(ig1F̂ffĜW 1 B̂F̂fWĜW ential one with the substitution

2 ryU 2
yg2

1F̂fW) (4.17)
(g1 , g2) 5 Su1

h1
,
u2

h2
D,

Ĥ21 5
ig1ĜDk

det
(ig1F̂ffĜW 1 B̂F̂fWĜW

where (h1 , h2) are the mesh sizes in the (x, y) directions,
2 ryU 2

yg2
1F̂fW) (4.18) respectively, and where u1 and u2 vary in the domain

[2f, f].
Ĥ22 5 2

ig1Ĝ2
Dk

det
(ig1F̂ff 1 (B̂ 1 B̂)F̂fW) 1 F̂DD , (4.19) Note that ‘‘high frequencies’’ are those which obey gi @

c for some constant, c, which is determined by the different
parameters in the problem. In the discrete space this cor-

where

k

det is the determinant symbol given by responds to ui @ chi . Since the constant c is independent
of the mesh size h, as the grid is refined the portion of
high frequencies in the spectrum increases and therefore

k

det 5 (B̂ĜW 1 g2
1ryU 2

y)(B̂ĜW 1 g2
1ryU 2

y). (4.20)
the approximation taken by the local mode analysis above
is more accurate for a larger part of the spectrum. This is

Since ĜW is a fourth order polynomial in g1,2 , ĜD , F̂ff , not surprising since as the grid is refined its resolution
B̂, and B̂ are of second order, F̂fW is first order, and F̂D is increases while the resolution of the smooth components
of zero order, the principal parts of the above expressions remains unchanged.
(the asymptotic limits of high frequencies), are given by The maximum eigenvalue of each of the disciplinary

Hessians is estimated by

Ĥ11 P
g2

1Fff

B̂B̂
5 2c1U 2

y

g4
1

ug2
1(1 2 M 2) 1 g2

2u
(4.21)

lmax 5 ĤiiSf
hD.

Ĥ12 5 Ĥ21 P
2g2

1ĜDF̂ff

B̂B̂ĜW
Unfortunately, the lowest eigenvalue cannot be estimated
by the procedure above since this is precisely the spectrum5

2c1U 2
yg4

1

D*0
?F g2

1(W*0xx 1 nW*0yy)
ug2

1(1 2 M 2) 1 g2
2u ? (g2

1 1 g2
2)2 range in which the approximation taken by the local mode

analysis does not hold. Still, it is reasonable to assume that
the lowest eigenvalue is asymptotically a fixed number as

1
g2

2(W*0yy 1 nW*0xx) 1 2g1g2(1 2 n)W*0xy

ug2
1(1 2 M 2) 1 g2

2u ? (g2
1 1 g2

2)2 G the mesh refines and therefore the condition number of
the Hessian is proportional to lmax . For a two-dimensional(4.22)
flow over a beam, (g2 5 0), we get for the aerodynamic
part of the Hessian (see Eq. (4.21))

Ĥ22 P F̂DD 5
c2(1 2 d)

d 2 (D*0 )(122d)/d. (4.23)

lmax 5
2c1U 2

yf2

u1 2 M 2u
1
h2 .

Note that for simplicity we assumed a complex represen-
tation of the errors, (4.1), and obtained a complex Hessian
symbol. If considering a real representation, i.e., We conclude that the aerodynamic part of the Hessian is

ill conditioned and its condition number is increasing as
the grid is refined (see [12] for further discussion). Thea(x, y) 5 â(g1 , g2)ei(g1x1g2y) 1 âconj(g1 , g2)e2i(g1x1g2y),
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structure’s symbol (4.23) approaches a constant, for the proach; i.e., design the aerodynamic optimal shape to give
the best performance and then design a minimum weighthigh frequencies, independent of the mesh size. We there-

fore conclude that the structural optimization problem is structure, restricted to the aerodynamic shape. The costate
h (l) is used in the aerodynamic (structural) design towell conditioned.
account for the term

5. APPLICATIONS TO OPTIMIZATION STRATEGIES
F
W

W
f

f

a SF
f

f

W
W
DDIn the previous section we computed explicitly the Hes-

sian’s symbol. In this section we discuss the applications
of this result to optimization strategies for the solution (in many applications this term is constructed by sensitivity
of the aeroelastic optimization problem. We differentiate analysis rather than by the adjoint method as done in
between two basic approaches, the ‘‘disciplinary’’ and the this paper).
‘‘multidisciplinary.’’ In the disciplinary approach the solu-

THE DISCIPLINARY ALGORITHM.tion of the problem is divided so that one discipline optimi-
zation problem is solved at each stage, decoupled from the 1. The aerodynamic shape optimization
other discipline. In the multidisciplinary approach both the problem is solved given a fixed rigid-
analysis and optimization solutions are performed in a ity D, deflection W, and structure cos-
tightly coupled manner. These two approaches are now tate h:
presented in more detail.

mina eG(fx 2 f *)2 ds
5.1. The Multidisciplinary Approach—Tight Coupling

subject toLately there has been an effort to develop new optimiza-
tion strategies which couple the two disciplines tightly dur-

Lf 5 0 z $ 0ing the analysis and optimization computation. This is
known as the MDO approach [1–7]. According to this Bf 5 ax 1 Wx z 5 0.
approach after each call to the optimizer the analysis and
adjoint equations are relaxed, or solved exactly, depending 2. The structure minimum weight prob-
on the feasibility choice (Multidisciplinary Feasibility lem is solved given a fixed aerody-
(MDF), Individual Discipline Feasibility (IDF) or All at namic shape a, potential f, and aerody-
Once (AAO), [3]). namic costate l:

THE MDO ALGORITHM.

minD c2 eG D1/d ds 1 c3 eG pW ds
The coupled aerodynamic shape and
structure minimum weight optimization subject to
problems are solved simultaneously:

G(D, W) 5 2p z 5 0.
mina,D c1 eG(fx 2 f *)2 dx 1 c2 eG D1/d dx
1 c3 eG pW dx 3. If some convergence criteria is

met then stop, otherwise go to 1.
subject to

We define a ‘‘disciplinary iteration’’ as one application
of steps 1 and 2 in the above algorithm (the order beingLf 5 0 z $ 0
interchanged, i.e., apply first step 2 followed by step 1).

Bf 5 (ax 1 Wx) z 5 0 We say that the optimization problem is loosely coupled
if one disciplinary iteration results in a significant errorG(D, W) 5 2p z 5 0
reduction in all the design variables. In that case the disci-
plinary algorithm should converge to the multidisciplinarywhere the pressure is given by p 5 (py
optimal solution with a small number of disciplinary itera-2 ryU 2

yfx).
tions. In a two discipline system we claim that the system
is loosely coupled if in one of the rows in the Hessian’s

5.2. The Disciplinary Approach—Weak Coupling
symbol there is a diagonal dominant term. In that case the
set of design variables that correspond to the dominantA common practical strategy used to solve large aero-

elastic shape optimization problems is the disciplinary ap- term can be determined, to a good approximation, while
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freezing the other variables, thus the problem is loosely Ĥ12(W*0xx 5 0)
coupled. In the following subsections we simplify the result
(4.21)–(4.23) for two and three space dimensions and show

P
2c1U 2

y

D*0

g4
1(g2

1nW*0yy 1 g2
2W*0yy 1 2g1g2(1 2 n)W*0xy)

ug2
1(1 2 M 2) 1 g2

2u ? (g2
1 1 g2

2)2 .that in both cases the Hessian’s symbol is diagonal domi-
nant in the first row (corresponding to the aerodynamic

(5.6)part) indicating loose coupling in the MDO problem.

5.3. Two Space Dimensions For the design of the structure in the span-wise direction
only, i.e., freezing the stream-wise design as done in prac-

In a two-dimensional flow over a beam the principal tice for aircraft wing design, the off-diagonal terms in the
part of the Hessian is given by (see Eqs. (4.21)–(4.23)) Hessian vanish, (g1 5 0), and therefore the problem is de-

coupled.
For errors in the stream-wise direction only, (i.e., g2 5

0), the off-diagonal terms in the Hessian reduce to

Ĥ(g1 @ 1) 5 2 1
c1U 2

y

u1 2 M 2u
g2

1
c1U 2

y

u1 2 M 2u
W*0xx

D*0

c1U 2
y

u1 2 M 2u
W*0xx

D*0
2

1
8

c2D*23/2
0

2. (5.1)

Ĥ12(g2 5 0) P
2c1U 2

ynW*0yy

D*0 u1 2 M 2u
.

By a similar argument as done for the two-dimensionalThe matrix (5.1) implies that for the nonsmooth error
case the three-dimensional optimization problem is alsocomponents in the design variables
loosely coupled.

Ĥ11 $ H12 . (5.2)

6. NUMERICAL TESTS
Assuming that the errors in the structural design variables

In the numerical test we considered a two-dimensionalare of the same order of magnitude as the errors in the
potential flow over a one-dimensional beam. The problemshape design variables,
was to compute the set hDh

i jN
i51 and the set hah

i jN
i51 such that

the following cost functional is minimized (we denote the
D P a (5.3) discrete quantities by a superscript h),

we conclude that the equation
F(f, W, D) 5 c1 ON

i51
((fh

x)i 2 f *h
i )2 1 c2 ON

i51
(Dh

i )1/2

(6.7)H11a 1 H22D 5 2g1 (5.4)

1 c3 ON
i51

(fh
x)iW h

i 1
1
2

c4 ON
i51

(ah
i )2

can be approximated by the equation

subject to the inequality constraintH11ã 5 2g1 . (5.5)

Dh
i $ Dmin 1 , i , N (6.8)As a result the error in the aerodynamic design variable,

a, is not sensitive to the error in the rigidity, D, and there-
fore can be computed to a good approximation indepen- and to the following finite difference equations,
dently.

(1 2 M 2
y)h

xxf
h
i,k 1 h

zzf
h
i,k 5 0 1 , i, k , N

5.4. Three Space Dimensions
h

zfh
i,1 5 h

x(ah
i 1 W h

i ) 1 , i , N
In a three-dimensional configuration we differentiate

fh
1,k 5 fh

2,k 1 , k , Nbetween the stream-wise and span-wise directions. Let us
assume that the curvature of the deflection in the stream- fh

N,k 5 fh
N21,k 1 , k , N

wise direction is negligible; i.e., set W*0xx 5 0. As a result
the coupling term Ĥ12 has the form fh

i,N 5 0 1 , i , N (6.9)
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h
xx(Dh

i h
xxW h

i ) 5 2ph
i 1 , i , N Lagrangian with respect to the design variables resulted

in the cost functional gradients.
W h

1 5 W h
N 5 0

h
xW h

1 5 h
xW h

N 5 0 for a clamped beam 6.2. Numerical Results

h
xxW h

1 5 h
xxW h

N 5 0 for a simply supported Two numerical cases were considered: a simply sup-
beam, (6.10) ported beam which has zero moment at the boundaries

(W 5 Wxx 5 0) and a clamped beam which has zero change
in the deflection at the boundaries (W 5 Wx 5 0). In thewhere h

x , h
z , h

xx and h
zz denote finite difference operators

two cases a tightly coupled solution was achieved with thefor the first and second derivatives in the x and z direc-
tions, respectively. MDO algorithm (see Section 5.1). The cost functional (6.7)

In the numerical test the far field parameters were set was driven to a local minimum at which the gradients
to unity except the far field Mach number which was set vanished. We denote that solution by (a*, D*).
to 0.5 In a second stage, the disciplinary solution (see Section

5.2) was obtained by the following steps. We started from
an initial guess for the design variables (a0 , D0) and solvedpy 5 ry 5 Uy 5 1; My 5 0.5.
the state and costate equations for this initial guess. Then
the structural optimization problem was solved keepingThe fourth term in the cost function was added for
the aerodynamic variables, hah

i , fh
i, j , lh

i, jjN
i, j51 , fixed (as ex-uniqueness of the optimal solution a* (since only the deriv-

plained in Section 5.2). The optimal rigidity solution atative ax appears in the equations). The weights in the
this stage was denoted by D1 . Then the state and costatecost functional were determined to establish significant
equations were solved on (a0 , D1) and the aerodynamiccoupling between the disciplines, in particular that at the
optimization problem was solved while keeping the struc-optimal solution the deflection, W*, and the shape, a*,
ture variables, hDh

i , W h
i , hh

i jN
i51 , fixed. The optimal aerody-have the same order of magnitude (see Figs. 1b (2b) and

namic shape solution at this stage was denoted by a1 . This1c (2c)):
procedure was repeated a second time for D2 and a2 .

The results (N 5 8) for the simply supported andc1 5 c3 5 c4 5 1; c2 5 0.01.
clamped cases are depicted in Figs. 1 and 2, respectively.
Figure 1a (2a) depicts the tangential derivative of the po-In order to avoid singularities in the beam equation,
tential at the optimal solution versus the target distributionDh 5 0, an inequality constraint has been applied on the ri-
f *. Figure 1b (2b) depicts the deflection at the optimalgidity
solution. Figure 1c (2c) depicts the aerodynamic design
variables haijN

i51 at different stages of the disciplinary solu-
D(x) $ Dmin(x) 0 # x # 1, (6.11) tion: a* is the solution of the tightly coupled (multidiscipli-

nary) algorithm, a0 is the initial design, a1 is the solution
where the minimal value of the rigidity was set to Dmin(x) 5 after a single disciplinary iteration, and a2 is the solution
1024 (in the case of a clamped beam this constraint was after two disciplinary iterations. Figure 1d (2d) depicts the
binding for two design variables as depicted in Fig. 2d). result for the structural design variables hDijN

i51 . As pre-
The computational grid consisted of an (N 3 N) grid dicted by the local mode analysis the disciplinary algorithm

on which the potential equation was solved in the whole converges to the MDO solution very effectively. It took
domain while the beam equation was solved on the bound- practically two disciplinary iterations to recover the
ary (z 5 0). On each grid on the boundary, 1 # i # N, MDO solution.
two design variables were defined: ah

i and Dh
i .

7. CONCLUDING REMARKS6.1. Derivation of the Gradient

The gradient of the cost functional (6.7) with respect to The symbol of the Hessian for a static aeroelastic optimi-
zation model problem was computed for the nonsmooththe 2N design variables, hDjN

i51 and hajN
i51 , was derived with

the discrete adjoint method. A Lagrangian was defined in error components in the design variables (Eqs. (4.16)–
(4.19)). The result indicates that for the nonsmooth compo-the discrete level, similar to the continuum level (see Eq.

(3.1)), as the sum of the discrete cost functional and discrete nents the multidisciplinary optimization system can be de-
coupled to the single discipline optimization problems.costate variables multiplying the residuals of the state finite

difference equations. The variation of the Lagrangian with Such a sequential approach should converge to the multi-
disciplinary solution with a small number of disciplinaryrespect to the state variables resulted in finite difference

equations for the costate variables. The variation of the iterations. The result also indicates that the aerodynamic
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FIG. 1. Simply supported case: (a) the tangential derivative of the potential at the optimal solution versus the target distribution f *; (b) the
deflection at the optimal solution; (c) the aerodynamic shape at different stages of the disciplinary algorithm. Starting from an initial guess a0 , after
one iteration of the disciplinary algorithm the solution a1 was obtained. The MDO solution is given by a*. Panel (d) depicts the results for the
rigidity similarly to the shape in (c).

optimization problem is ill conditioned, and therefore sec- optimization problem is well conditioned (the MDO
approach also introduces a technical difficulty of joiningond order information is essential for efficiently solving this

part of the problem [12], while the structural optimization together two large codes). The results shown in this
paper indicate that the MDO approach applied on aproblem is well conditioned. Thus, it is anticipated that

the number of optimization iterations required to solve fine scale model might not be necessary to obtain a
good approximation of the optimal solution. The effectthe multidisciplinary problem is determined by the aerody-

namic optimization part of the problem. of the smooth components can be captured by a coarse
model containing a relatively small number of designThe aim of the MDO approach is to couple a refined

CFD code with a detailed finite-element structural analy- variables and thus can be solved by the MDO approach
with a relatively low computational cost. This will requiresis code to compute the aeroelastic states prior to each

optimization iteration. The computational complexity of simple models for the flow (panel method or small
disturbance potential on a coarse grid) coupled with athe MDO algorithm is much greater than that of the

disciplinary algorithm since at each multidisciplinary iter- plate model, or coarse finite-element model, for the
structure.ation both the aerodynamic and structural optimization

problems have to be solved. Moreover, the MDO problem If indeed for a given static aeroelastic optimization
problem the aerodynamic block in the Hessian (H11) iscan be ill conditioned even when each of the disciplinary
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FIG. 2. Clamped case: Panels (a–d) are as described in the legend for Fig. 1(a–d). Note that in this case the rigidity tends to zero at two points
(i 5 3 and i 5 7). At these points the constraint is binding and Di 5 1024.

dominant over the coupling block (H12) for the non- ports the predictions of the analysis: within two disciplin-
ary iterations the multidisciplinary solution has been re-smooth components, as discussed, we propose that such

problems be solved in two stages as illustrated in Fig. covered.
Finally, how far can we extrapolate the conclusions3. In the first stage, the MDO approach will be applied

on a coarse model. The second stage starts with the from this model problem to a more realistic model?
As for the aerodynamic model, it is shown in [12]solution of the MDO algorithm and the refined problem

is solved with the disciplinary algorithm, thus avoiding that an identical symbol for the aerodynamic part of the
Hessian is obtained when using Euler equations insteadthe enormous complexity of the MDO algorithm when

applied on the fine scale model. We claim that the of the full potential. The analysis for the Navier–Stokes
equations has not yet been completed. Shocks were alsoresulting design will be a good approximation of the

optimal solution. We emphasize that this is possible due neglected in the aerodynamic model, but we postulate
that they are not going to change the main conclusionto the loose coupling between the two discipline design

problems, otherwise the proposed approach will require since shocks have a global effect and are not likely to
affect the conditioning of the Hessian.numerous disciplinary iterations and therefore in that

case the MDO approach should be applied also on As for the specific modeling which we have chosen
to analyze, since there are many different models forfine scales.

A numerical test has been done for the model problem the cost function and different constraints depending on
the application, it is impractical to analyze them all.presented in the paper. The numerical test clearly sup-
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FIG. 3. An optimization strategy to solve aeroelastic optimization problems in case of loose coupling as defined in Section 5. Apply the MDO
approach on a coarse model followed by a disciplinary serial approach on fine scales. The result should be a good approximation of the multidisciplinary
optimal solution.
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